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Suggested Solution to Midterm

1(a)

The completeness property of R says that any non-empty subset of R which is
bounded above has a supremum in R.

1(b)

Since S is a non-empty subset of R which is bounded above, by the completeness
property of R, the supremum of S exists in R. Let u = supS.

We first show that −u is a lower bound for −S, hence −S is bounded below.
Since u is the supremum of S, in particular, it is an upper bound of S, which
means that s ≤ u for all s ∈ S. Multiplying by −1 gives −s ≥ −u for all s ∈ S.
Since every element of −S has the form −s for some s ∈ S, −u is a lower bound
of −S.

Next, we show that −u is the greatest lower bound for −S, i.e. −u =
inf(−S). In other words, we want to show that −u+ ε is not a lower bound of
−S for any ε > 0. Since u is the least upper bound of S, for any ε > 0, u− ε is
not an upper bound of S. Therefore, there exists some s0 ∈ S, depending on ε,
such that u− ε < s0. Multiplying by −1 gives −u+ ε > −s0. Since −s0 ∈ −S,
−u + ε cannot be a lower bound for −S. Since ε > 0 is arbitrary, this proves
that −u = inf(−S).

2(a)

First of all, observe that b
1
n > 1 for all n ∈ N since b > 1. Therefore, we can

write b
1
n = 1+dn for some dn > 0. By Bernouli’s inequality, since dn > 0 > −1,

b = (1 + dn)n ≥ 1 + ndn.

This implies that dn ≤ b−1
n for each n ∈ N.

To prove that lim(b
1
n ) = 1. Let ε > 0 be fixed but arbitrary. By Archimedean

Property, we can choose K ∈ R such that K > b−1
ε > 0. For any n ≥ K, we

have

|b 1
n − 1| = |dn| = dn ≤

b− 1

n
≤ b− 1

K
< ε.
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2(b)

Since 0 < a < 1, we have 0 < an < 1 for all n ∈ N. Therefore, for all n ∈ N,

1 ≤ (1 + an)
1
n ≤ 2

1
n .

By (a), lim(2
1
n ) = 1. Also, we have lim(1) = 1. By squeeze theorem, we have

lim((1 + an)
1
n ) = 1 as well.

3(a)

We will prove the statement by mathematical induction. Note first that for
n = 1, 1 ≤ x1 = 1 ≤ 3. Assume 1 ≤ xk ≤ 3 for some k ∈ N. Then,

xk+1 =
3 + 2xk
3 + xk

= 1 +
xk

3 + xk
≥ 1

where the last inequality holds since xk ≥ 1 ≥ 0. On the other hand,

xk+1 =
3 + 2xk
3 + xk

= 2− 3

3 + xk
≤ 2 ≤ 3

where the second to the last inequality holds since xk ≥ 1 ≥ 0.

3(b)

We will show that xn ≤ xn+1 for all n ∈ N again by induction. Note that

x1 = 1 ≤ 5

4
= x2.

So the statement is true for n = 1. Suppose xk ≤ xk+1 for some k ∈ N. Note
that

xk+2 − xk+1 =
3 + 2xk+1

3 + xk+1
− 3 + 2xk

3 + xk
=

3(xk+1 − xk)

(3 + xk+1)(3 + xk)
≥ 0

where we have used the induction hypothesis that xk ≤ xk+1 and that xn ≥ 0
for all n ∈ N by (a). By mathematical induction, we have xn ≤ xn+1 for all
n ∈ N.

Combining with (a), (xn) is an increasing sequence which is bounded above
by 3. By Monotone Convergence Theorem, (xn) converges to a unique limit
x ∈ R. Since lim(xn+1) = lim(xn) = x, by taking limit in the recursive relation.
We obtain

x =
3 + 2x

3 + x
.

Rearranging gives the quadratic equation x2 + x− 3 = 0, which yields

x =
−1 +

√
13

2
or x =

−1−
√

13

2
.

The second solution is discarded as we know by (a) that 1 ≤ x = lim(xn) ≤ 3.

Therefore, lim(xn) = −1+
√
13

2 .
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4

We prove by contradiction. Suppose
√

12 is not irrational. Then, there exists
m,n ∈ Z, n 6= 0, such that m and n are relatively prime and

√
12 = m/n.

Squaring both sides and rearranging gives

12n2 = m2.

Since 3 divides 12, it also divides m2, and hence m as well because 3 is prime.
Write m = 3k for some k ∈ Z. We have

12n2 = m2 = (3k)2 = 9k2.

Thus, 4n2 = 3k2. Therefore, by the same argument, 3 divides n2 and hence
n. As a result, m and n are both divisible by 3 which contradicts the fact that
they are relatively prime.

5

We proceed by contradiction. Suppose on the contrary that (xn) does not
converge to x. Then, there exists ε0 > 0 and a subsequence (xnk

) of (xn) such
that

|xnk
− x| ≥ ε0 for all k ∈ N. (1)

On the other hand, since (xnk
) is a subsequence of (xn), by assumption there

exists another subsequence (xnk`
) of (xnk

) such that lim(xnk`
) = x as ` → ∞.

This implies that for the particular ε0 > 0 above, we can find some L ∈ N such
that

|xnk`
− x| < ε0 for all ` ≥ L.

However, since (xnk`
) is a subsequence of (xnk

), every term in the sequence
(xnk`

) also satisfies (1). Therefore, we obtain when ` = L,

ε0 ≤ |xnkL
− x| < ε0,

which is a contradiction.

6(a)

Since (xn) is a bounded sequence, there exists some M > 0 such that |xn| ≤M
for all n ∈ N. Therefore,

−M ≤ sm := inf{xn : n ≥ m} ≤ xm ≤M

for all m ∈ N. Thus, the sequence (sm) is bounded above by M .
Next we show that (sm) is an increasing sequence. Recall that inf S1 ≥ inf S2

for any bounded subset S1 ⊆ S2 of R. As

{xn : n ≥ m+ 1} ⊆ {xn : n ≥ m}.
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Taking infimum gives sm+1 ≥ sm for any m ∈ N. Therefore, (sm) is an increas-
ing sequence.

Since (sm) is an increasing sequence which is bounded above, by Monotone
Convergence Theorem (sm) is convergent with

lim(sm) = sup{sm : m ∈ N}.

6(b)

Let x ∈ [0, 1] be fixed but arbitrary. By density of Q, there exists some rational
number 0 ≤ q ≤ 1 in the interval (x− 1

2 , x+ 1
2 ) such that q 6= x. Define qn1

to
be this rational number.

To define the next term qn2
in the subsequence, notice that there are only

finitely many terms q1, q2, · · · , qn1−1 before qn1
in the sequence (qn) and that

any open interval contains infinitely many rational numbers (for example, by
density of Q). Therefore, there exists qn2 with n2 > n1 such that qn2 lies in the
open interval between qn1

and x such that |qn2
− x| < 1/3.

Inductively, after qnk
is fixed, we can choose qnk+1

such that nk+1 > nk and
qnk+1

6= x lies in the open interval between qnk
and x such that |qnk

− x| ≤
1
k+1 . As lim( 1

k+1 ) = 0, we have obtained a subsequence (qnk
) of (qn) such that

lim(qnk
) = x.
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